ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы измерительные программно-технические «Азимут 4»

Назначение средства измерений

Комплексы измерительные программно-технические «Азимут 4» (далее - комплексы) предназначены для измерений скорости движения транспортных средств (далее - ТС) в зоне контроля и на контролируемом участке по видеокадрам, скорости движения ТС в зоне контроля радиолокационным методом; значений текущего времени, синхронизированных с национальной шкалой времени UTC(SU); измерений текущих навигационных параметров и определения на их основе координат комплексов.

Описание средства измерений

Принцип действия комплексов при измерении скорости движения TC по видеокадрам в зоне контроля и на контролируемом участке основан на автоматическом измерении расстояния, пройденного TC, и интервалов времени, за которое это расстояние пройдено. При измерении скорости движения TC на контролируемом участке необходимо использовать минимум два комплекса в любой комбинации исполнений.

Принцип действия комплексов при измерении скорости ТС радиолокационным методом в зоне контроля основан на измерении разности частоты высокочастотных сигналов при отражении от ТС, находящегося в зоне контроля (эффект Доплера).

Принцип действия комплексов при измерении значений текущего времени и координат основан на параллельном приеме и обработке сигналов навигационных космических аппаратов космических навигационных систем ГЛОНАСС/GPS с помощью приемника, входящего в состав комплекса, автоматической синхронизации шкалы времени комплекса с национальной шкалой времени UTC(SU) и записи текущего момента времени и координат в сохраняемые фото- и видеокадры, формируемые комплексом.

Комплексы выпускаются в следующих исполнениях:

- исполнение 01 состоит из вычислительного модуля (ВМ) специализированного компьютера со встроенным специализированным программным обеспечением (ВСПО), приемной аппаратуры ГНСС ГЛОНАСС/GPS, выносных телевизионных датчиков (ТВ датчиков), в состав которых входит видеокамера высокого разрешения и инфракрасная (ИК) система освещения;
- исполнение 02 состоит из моноблока, включающего в себя специализированный компьютер с ВСПО, приемную аппаратуру ГНСС ГЛОНАСС/GPS, видеокамеру высокого разрешения и ИК систему освещения.
- исполнение 03 состоит из моноблока, включающего в себя специализированный компьютер с ВСПО, приемную аппаратуру ГНСС ГЛОНАСС/GPS, видеокамеру высокого разрешения, ИК систему освещения и радиолокационный модуль.

Общий вид комплексов, схема пломбировки от несанкционированного доступа, обозначение места нанесения знака утверждения типа представлены на рисунках 1-4.

Рисунок 1 – Общий вид ТВ датчика комплексов в исполнении 01

Рисунок 2 – Общий вид вычислительного модуля комплексов в исполнении 01

Рисунок 3 – Общий вид комплексов в исполнениях 02 и 03

Рисунок 4 – Место нанесения знака утверждения типа комплексов в исполнениях 02 и 03

Программное обеспечение

Функционирование комплексов осуществляется под управлением специализированного программного обеспечения (ПО).

Уровень защиты ПО «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	Азимут 4	
Номер версии (идентификационный номер) ПО	не ниже 4.0.0	
Цифровой идентификатор ПО (контрольная сумма	a25f33f12fb11b8658b8b630956970ca	
исполняемого кода)		
Алгоритм вычисления идентификатора ПО	MD5	

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений скорости движения ТС, км/ч:	
– при измерении по видеокадрам в зоне контроля (исполнения 01, 02)	от 0 до 350
– при измерении на контролируемом участке (исполнения 01, 02, 03	
в любой комбинации)	от 0 до 350
– при измерении радиолокационным методом в зоне контроля	
(исполнение 03)	от 20 до 300
Пределы допускаемой погрешности измерений скорости ТС:	
а) при измерении по видеокадрам в зоне контроля:	
– в диапазоне от 0 до 100 км/ч включ., км/ч	±1
– в диапазоне св. 100 км/ч до 350 км/ч включ., %	±1
б) при измерении на контролируемом участке:	
– в диапазоне от 0 до 100 км/ч включ., км/ч	±1
– в диапазоне св. 100 км/ч до 350 км/ч включ., %	±1
в) при измерении радиолокационным методом в зоне контроля	
(исполнение 03):	
– в диапазоне от 20 до 200 км/ч включ., км/ч	±1
– в диапазоне св. 200 км/ч до 300 км/ч включ., км/ч	±2
Пределы допускаемой абсолютной погрешности синхронизации	
внутренней шкалы времени комплексов к шкале времени UTC(SU), мс	±1
Границы допускаемой погрешности (при доверительной	
вероятности 0,95 и геометрическом факторе PDOP ≤ 3) определения	±3
координат в плане, м	

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Минимальная протяженность контролируемого участка, м	70
Размеры зоны контроля ТВ датчика, м:	
– длина	до 40
– ширина	до 14
Габаритные размеры без крепежных, установочных, съемных	
элементов и блоков питания, мм, не более:	
а) вычислительный модуль	
– длина	210
– ширина	430
– высота	530

Продолжение таблицы 3

Наименование характеристики	Значение
б) ТВ датчик	
– длина	410
– ширина	150
– высота	140
в) моноблок	
– длина	490
– ширина	180
– высота	210
Масса без крепежных, установочных, съемных элементов и блоков	
питания, кг, не более:	
– вычислительный модуль	14,5
– TB датчик	2,9
– моноблок	4,8
Условия эксплуатации:	
– температура окружающей среды, °C:	от -60 до +60
– относительная влажность воздуха при +30 °C, %	до 95

Знак утверждения типа

наносится на корпус вычислительного модуля в виде наклейки и на титульные листы паспорта и руководства по эксплуатации методом печати.

Комплектность средства измерений

Таблица 4 – Комплектность комплексов

Наименование	Обозначение	Количество
Комплекс измерительный программно-		
технический «Азимут 4»		1 шт.*
Руководство по эксплуатации	ТБДД 466534.030 РЭ	1 экз.
Руководство оператора	ТБДД.466534.030 РО1	1 экз.
Паспорт	ТБДД 466534.030 ПС	1 экз.
Методика поверки	ТБДД 466534.030 МП	1 экз.

Поверка

осуществляется по документу ТБДД 466534.030 МП «Комплексы измерительные программнотехнические «Азимут 4». Методика поверки», утвержденному Φ ГУП «ВНИИ Φ ТРИ» 30 декабря 2019 г.

Основные средства поверки:

- имитаторы скорости движения транспортных средств «ИС-24»Д, регистрационный номер 63392-16;
- источник первичный точного времени УКУС-ПИ 02ДМ, регистрационный номер 60738-15;
- аппаратура навигационно-временная потребителей глобальных навигационных спутниковых систем ГЛОНАСС/GPS/GALILEO/SBAS NV08C-MCM, NV08C-CSM и NV08C CSM-DR, регистрационный номер 52614-13;
- GNSS-приемники спутниковые геодезические многочастотные SIGMA, регистрационный номер 40862-09;
 - лазерный дальномер Leica DISTO D510, регистрационный номер 53755-13;
 - частотомер универсальный GFC-8010H, регистрационный номер 19818-00.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых комплексов с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде оттиска поверительного клейма или наклейки.

Сведения о методиках (методах) измерений

приведены в эксплуатационной документации.

Нормативные и технические документы, устанавливающие требования к комплексам измерительным программно-техническим «Азимут 4»

Комплекс измерительный программно-технический «Азимут 4». Технические условия. ТУ 26.51.66-005-24066729-19.

Изготовитель

Общество с ограниченной ответственностью «Технологии безопасности дорожного движения» (ООО «ТБДД»)

ИНН 5904286923

Адрес: 614010, г. Пермь, ул. Маршрутная, д.15

Телефон: +7 (342) 281 00 33 Web-сайт: www.tbdd.ru E-mail: info@tbdd.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт физико-технических и радиотехнических измерений»

Адрес: 141570, Московская область, Солнечногорский район, город Солнечногорск, рабочий поселок Менделеево, промзона ФГУП ВНИИФТРИ

Телефон (факс): +7 (495) 526-63-00

Web-сайт: <u>www.vniiftri.ru</u> E-mail: office@vniiftri.ru

Аттестат аккредитации ФГУП «ВНИИФТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 11.05.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2020 г.